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Abstract.  This paper presents a method of development of spacecraft onboard functions based on 
a functional model of spacecraft (FMS). This model provides a standard framework for designing 
the functions of onboard components. It also enables development of a standard database (called 
the Spacecraft Information Base or SIB) that stores functional information on any onboard 
component.   

To monitor and control onboard components, we have developed a standard protocol called the 
Spacecraft Monitor and Control Protocol (SMCP). Since the specific information on the functions 
of any onboard component can be retrieved from the standard database, the design of SMCP is 
very simple. SMCP specifies types of messages used for monitor and control spacecraft onboard 
components, and the formats of the messages used for each onboard component are stored in SIB, 
too. 

The functional and operational characteristics of onboard components can be specified, to some 
extent, by parameters used by FMS and SMCP, which are stored in SIB. This information can be 
used by any application program including spacecraft testing and operations systems. Generic 
application programs that can be used to the design, testing and operations of any component or 
any spacecraft can also be developed because they can retrieve the functional and operational 
information on specific components from SIB. 

Furthermore, the part of the software installed in onboard components that is responsible for the 
functional and operational behavior can be automatically generated from the parameters of FMS 
and SMCP stored in SIB, as long as it is described with these parameters. 

Introduction 
Presently, the functions of spacecraft onboard components are designed almost independently for 
each component without using any standards. This prevents reuse of the design of onboard 
components and the systems that support their development (design support systems, testing 
systems, operations systems, etc.) from component to component or from spacecraft to spacecraft. 
Furthermore, there are no standards on how to describe the functional design and operational rules 
for onboard components. Therefore, each designer has to devise a way of describing the functional 
design and operational rules for his or her components, and people who use this information 
(spacecraft testers, spacecraft operators, etc.) have to learn how to read the description written by 
each designer. 

In order to solve these problems, this paper proposes a method of development of spacecraft 
onboard functions by using a functional model of spacecraft (FMS). FMS provides a standard way 
of designing the functions of onboard components. The FMS is based on the object-oriented 



  

software technology and uses the concept of Functional Object (FO). FO is a unit for the functions 
of onboard components and captures information necessary for operating onboard components. 
By using this model, the functional design of onboard components can be specified in a formal and 
unambiguous way. Furthermore, reuse of functional design of onboard components will be easier 
because the information on components can be shared more easily among designers of onboard 
components. This will reduce the cost of developing onboard components. 

By using a formal method for describing functional objects, a standard way of describing the 
characteristics of Functional Objects can also be obtained. FMS enables development of a standard 
database that stores the functional information of any components by using a standard way of 
describing the characteristics of Functional Objects. This standard database is called the 
Spacecraft Information Base (SIB). 

To monitor and control onboard components from the spacecraft control system on the ground or 
from a computer installed on the spacecraft, messages (called command messages) are sent to the 
components and messages (called telemetry messages) are received from them. The Spacecraft 
Monitor and Control Protocol (SMCP) specifies the types and formats of command and telemetry 
messages and the sequences of their interactions. SMCP assumes that any onboard component is 
designed according to FMS. Therefore, it is designed to monitor and control Functional Objects. 
Since the characteristics of Functional Objects can be retrieved from SIB, the design of SMCP is 
very simple. SMCP can be used either between a spacecraft and its ground control system or 
between onboard components on the same or different spacecraft. The formats of command and 
telemetry messages for each specific onboard component are also stored in SIB. 

By designing onboard components using FMS and SMCP, the functional and operational 
information of any component can be stored in SIB in a standard way as parameters used by FMS 
and SMCP, and this information can be used by any application program. This reduces the cost and 
risk of manual information transfer using documents. 

Generic application programs that can be used to the design, testing or operations of any 
component can also be developed because they can retrieve the functional and operational 
information on specific components from SIB. This reduces the cost of developing supporting 
systems. 

Furthermore, the part of the software installed in onboard components that is responsible for 
functional and operational behavior can be automatically generated from the parameters of FMS 
and SMCP stored in SIB, as long as it is described with these parameters. This reduces the cost of 
developing onboard components. 

The basic elements of this method and their relationships are shown in Figure 1. In this figure, the 
arrows show the “developed from” relationship.  For example, SMCP is developed from FMS. 



 

  

 
Figure 1. Basic elements and their relationships 

 

Functional Model of Spacecraft (FMS) 

Functional Model 
The Functional Model of Spacecraft (FMS) provides a framework for designing the functions of 
onboard components. It does not specify ways of designing specific functions. For typical 
functions of spacecraft, we plan to develop a library of functional designs, which can be 
customized by component designers for their specific components. In this approach, what is meant 
by the functions of onboard components are an abstract representation of the jobs performed by the 
onboard components. They are abstract in the sense that only the aspects visible from the outside 
of the components are treated. 

FMS was developed based on the Functional Viewpoint of the Reference Architecture for Space 
Data Systems (RASDS) (CCSDS 2008) and the Computational Viewpoint of the Reference Model 
of Open Distributed Processing (RM-ODP) (ISO 1996), but many extensions were added to these 
Viewpoints. 

To design complex functions performed by onboard components, it is a common practice to 
decompose the functions into groups of functions, each consisting of a small set of functions 
closely inter-related to each other. In FMS, a group of functions defined in this way is called a 
Functional Object (FO). 

Functional Objects 
The concept of Functional Object is based on the concept of object used in the object-oriented 
software design methodology. However, there is a small difference between the concept of 
Functional Object used here and the concept of object used in the object-oriented software design. 
In the object-oriented software design, objects are dynamically instantiated from a class, while 
Functional Objects of this approach represent instances that exist permanently (although they may 
be active or inactive at specific times). 

A Functional Object can contain other Functional Objects. In this model, a spacecraft is also a 
Functional Object and it contains all the other Functional Objects associated with that spacecraft. 
Therefore, Functional Objects are organized in a hierarchical way and the spacecraft is represented 



  

by the root Functional Object. A Functional Object can be either active or inactive at any time and 
whether it is active or inactive is determined by the state (which will be explained later) that the 
parent Functional Object is in at that time. 

A Functional Object is specified with the following concepts: 

     - Attributes, 
     - Operations, 
     - Alerts, 
     - Behavior, and 
     - Diagnosis rules. 

An attribute is a parameter that represents the status of a certain part or a certain aspect of the 
Functional Object. The values of some attributes are analog (such as a temperature) and the values 
of some attributes are discrete (like an on-off status).  An attribute may have a complex data type 
such as an array or a record. The value of some attributes can be set from the outside (through 
operations) but the value of some attributes cannot be set. 

An operation is a function performed by the Functional Object and is invoked by receiving a 
command message from the outside. Operations include those for setting values to attributes. As a 
result of performing an operation, the values of one or more attributes usually change. 

An alert is a function to report to the outside of the Functional Object that an important event has 
occurred inside the Functional Object. Alerts are delivered to the outside using telemetry 
messages. The occurrence of an event can be detected by the outside of the Functional Object by a 
change in the value of an attribute, but alerts are used to actively report the occurrence of important 
events. In a way, alerts can be considered to be the inverse of operations. 

The behavior of the Functional Object is represented with one or more state transition diagrams. 
State transitions are triggered either as a result of performing an operation or by the occurrence of 
an internal event. 

A state diagram is either active or inactive at any time. If the Functional Object itself is inactive, all 
the state diagrams associated with the Functional Object are inactive. Some diagrams are inactive 
while the Functional Object is active if the Functional Object is in a certain state (or in one of a 
certain set of states) of another diagram at that time. If a Functional Object has three state transition 
diagrams and is active at some time, it has one, two, or three active state transition diagrams. If the 
Functional Object has two active state transition diagrams at some time, it is in one of the states of 
one diagram and at the same time it is in one of the states in the other diagram. Therefore, it is in 
two states, each belonging to one of the active diagrams. 

In what state of a state transition diagram the Functional Object is in at a certain time is indicated 
by the value of an attribute associated with that diagram. When a state transition occurs, the value 
of that attribute also changes. The values of some other attributes may change as a result of the 
transition. Each state of a Functional Object determines the set of operations that can be invoked 
when the Functional Object is in that state. Therefore, states specify what can be performed by the 
Functional Object at that time and the state transition diagrams specify the correct sequences of 
operations that can be performed by the Functional Object and how to verify whether each 
operation has been performed correctly. 

Diagnosis rules specify rules used by the outside to determine whether a set of Functional Objects 
is in a dangerous condition. A diagnosis rule is defined by a logical expression performed against 



 

  

the values of a set of attributes (this set can contain attributes from multiple Functional Objects). 

The characteristics (that is, attributes, operations, etc.) of specific Functional Objects are stored in 
the Spacecraft Information Base (SIB) with a standard format. 

Example of a Functional Object 
The concept of Functional Object is illustrated with a very simple Functional Object. Let’s 
suppose that a spacecraft called X has a Functional Object called A. It is used to represent the 
function of a component of this spacecraft. Functional Object A contains two other Functional 
Objects A1 and A2 (see Figure 2). Functional Object A is used to represent the general functions 
related to this component and Functional Objects A1 and A2 are used to represent some specific 
functions of this component. 

 

 
Figure 2. Example of Functional Objects 

 

This Functional Object has the following attributes: 

     - A_OnOff, 
     - A_RunStop, 
     - A_ErrorStatus, 
     - A_CheckMode. 

Attribute A_OnOff indicates whether this component is on or off. Attribute A_RunStop indicates 
whether this component is running or not. Attribute X_A_ErrorStatus shows the name of the error 
it has detected most recently. Attribute A_CheckMode shows what check mode it is using. The 
values of the first two attributes correspond to the states of the two state transition diagrams that 
this Functional Object has. Of these four attributes, only the value of A_CheckMode can be set by 
the outside by invoking an operation. 

This Functional Object has the following operations: 

     - A_On, 
     - A_Off, 
     - A_Start, 
     - A_Stop, 
     - A_SetCheckMode. 

Operations A_On and A_Off are used to turn on and off this component, respectively. Operations 
A_Start and A_Stop are used to start and stop the activities of this component, respectively. 



  

A_SetCheckMode is used to set the value of attribute A_CheckMode. 

This Functional Object has one alert, which is called A_ErrorDetected. It is used to report to the 
outside that some error has occurred. The kind of error that has occurred can be inspected by 
looking at the value of attribute A_ErrorStatus. The value of this attribute can also be attached to 
the alert message as a parameter. 

The behavior of this Functional Object can be represented with two state transition diagrams (see 
Figure 3). Since the second diagram is active only when the Functional Object is in state On of the 
first diagram, it is shown contained in the first diagram. The labels attached to the arrows in the 
diagrams are the triggers of the transitions. Of these triggers, only A_ErrorOccurred corresponds 
to an internal event that is detected by the Functional Object. The other four triggers correspond to 
the operations performed by the Functional Object. When event A_ErrorOccurred is detected 
when the state is in Run, the state is automatically transitioned to state Stop and alert 
A_ErrorDetected is issued to the outside. 

 

 
Figure 3. State transition diagrams of Functional Object A 

 

The daughter Functional Objects A1 and A2 are active only when A is in state Run. 

Spacecraft Monitor and Control Protocol (SMCP) 
To monitor and control onboard components, messages (called command messages) are sent to the 
components and messages (called telemetry messages) are received from them. The Spacecraft 
Monitor and Control Protocol (SMCP) is an application layer protocol that defines types and 
formats of command and telemetry messages and sequences of interactions of messages to be used 
to monitor and control onboard components represented by Functional Objects (see Figure 4).  

 

 
Figure 4. Spacecraft Monitor and Control Protocol (SMCP) 

 

 



 

  

The entity that is monitored and controlled with this protocol is always a Functional Object or a set 
of Functional Objects representing onboard components, and they are called the Targets. The 
entity that monitors and controls the Target Functional Objects is called the Controller and is 
usually a piece of software that resides in a computer, which may be located either on the ground 
or onboard the same spacecraft or a different spacecraft. SMCP can be used between many 
different pairs of Controllers and Targets. For example, the {Controller, Target(s)} pair can be {a 
ground test or control system, an entire spacecraft}, {the spacecraft central data handling system, 
onboard subsystems}, or {a mission processor, science instruments}. 

The Protocol Data Units (PDUs) of SMCP are typically transferred by the Space Packet Protocol 
(CCSDS, 2003), but they can be transferred by any network layer and/or transport layer protocol.  

The SMCP also has the capability to adjust the volume of message exchanges depending on the 
available bandwidth of the link between the Controller and the Target.  

The formats of command and telemetry messages used for a specific onboard component are 
stored in the Spacecraft Information Base (SIB) with a standard format. 

The SMCP has the following two command message types: 

     - Action Command, and 
     - Get Command. 

Action Commands are used for the Controller to invoke operations of a Target Functional Object. 
Get Commands are used for the Controller to trigger generation of Value Telemetry messages (see 
below). 

The SMCP has the following three telemetry message types: 

     - Value Telemetry, 
     - Notification Telemetry, and 
     - Command Acknowledgment. 

Value Telemetry is used for the Target to send the values of an attribute or a set of attributes. There 
are three ways for the Target to generate telemetry messages of this type. The first way is to 
generate instances of the same telemetry message periodically. The second way is to generate a 
telemetry message only when the Target has received a Get Command message to instruct the 
Target to send a telemetry message. The third way is to send a telemetry message when the value 
of the attribute has changed (or when the value(s) of one or more attribute(s) in the attribute set 
has/have changed). Notification telemetry is used for the Target to send an alert issued by the 
Target Functional Object. Command Acknowledgment is used for the Target to acknowledge 
receipt of a command message. 

If the bandwidth of the link between the Controller and the Target is sufficiently high, the Target 
will send Value Telemetry messages at a constant interval. If the bandwidth of the link between the 
Controller and the Target is not sufficiently high, however, the Target will send Value Telemetry 
messages only when it has received Get Command messages and when there have been changes in 
the values of attributes. (In this case, loss of telemetry messages cannot be tolerated.) Therefore, it 
is possible to adjust the telemetry transmission method to some extent depending on the 
characteristics of the link. 



  

Spacecraft Information Base (SIB) 
The Spacecraft Information Base (SIB) is a standard database that stores (1) the characteristics of 
the Functional Objects developed for a spacecraft and (2) the formats of command and telemetry 
messages defined for that spacecraft according to SMCP. 

The SIB contains such information as: 

     - Characteristics of Functional Objects, 
          - Attribute names, attribute data types,  
          - Operation names, operation parameter names, operation parameter data types, 
          - Alert names, alert parameter names, alert parameter data types, 
          - States, attribute values for each state, state transitions, trigger for each transition, 
          - Diagnosis rules, 
     - Telemetry message formats, and 
     - Command message formats. 

The contents of SIB are generated by the designer of the onboard components and maintained 
throughout the lifetime of the spacecraft (that is, during design, component testing, spacecraft 
integration, flight operations, etc). We have also developed an Excel-based tool to assist 
generation of the contents of SIB (see Figure 5). The contents of SIB generated with this tool are 
automatically converted to an XML document, which can be used by any application program, 
including the code generator explained in the next section. We will further develop another tool for 
generating SIB contents using graphical interfaces. 

 

 
Figure 5. Example of an Excel sheet to generate contents of SIB 

 

Development of Onboard Software 
The Institute of Space and Astronautical Science of Japan Aerospace Exploration Agency 
(JAXA/ISAS) is developing a standard onboard data handling architecture (Yamada et al. 2008), 
which will be used for all future science spacecraft of JAXA/ISAS. This architecture specifies a 



 

  

stack of standard communications protocols to be used for communications between onboard 
components. These standard protocols are (from bottom to top of the stack) SpaceWire (ECSS 
2003), the Space Packet Protocol (CCSDS 2003), and the Spacecraft Monitor and Control Protocol 
(this paper). 

Software used for onboard components will also be developed based on this architecture. The 
layered organization of onboard software is shown in Figure 6. 

 

 
Figure 6. Layered organization of onboard software 

 

The software for processing the SpaceWire protocol and the Space Packet Protocol is developed as 
middleware, which can be used by any onboard component. 

The software for processing the Spacecraft Monitor and Control Protocol and for the basic 
behavior stored as state transition diagrams in SIB will be generated automatically by a code 
generator. Since the necessary information for each specific onboard component can be retrieved 
from SIB in a standard way, it is possible to develop a code generator that generates these layers of 
onboard software for any onboard component. 

The software that implements component-specific behavior that cannot be expressed by state 
diagrams (such as attitude control logic) will be developed individually. 

Conclusion 
In this paper, we have shown how the spacecraft onboard components can be developed based on 
the Functional Model of Spacecraft (FMS) and the Spacecraft Monitor and Control Protocol 
(SMCP). 

The cost of developing spacecraft can be greatly reduced with this model-based method because: 

1) Designers of onboard components can use the standard design and description methods, 
and do not have to develop or learn different design and description methods; 

2) Reuse of designs of onboard components becomes easier: 

3) Generic application programs that can be applied to any component can be developed by 



  

using the information on specific components contained in SIB;  

4) Some part of flight software can be generated automatically by using the information 
stored in SIB; and 

5) Manual exchanges of documents can be reduced by using SIB. 

JAXA/ISAS is presently developing spacecraft onboard components based on these concepts for 
ASTRO-H (an X-ray telescope mission) and SPRINT-A (a EUV telescope mission), and will 
apply these concepts to all future science missions. 
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